🌚 Tentukan Negasi Dari Pernyataan Majemuk Berikut

Soal Tentukan negasi atau ingkaran dari pernyataan-pernyataan di bawah ini: a) Bogor hujan lebat dan Jakarta tidak banjir. b) Hari ini tidak mendung dan Budi membawa payung Pembahasan: Seperti pada soal-soal sebelumnya, maka negasi dari konjungsi adalah sebagai berikut. Tentukannegasi dari pernyataan majemuk berikut Deni malas belajar atau ia tidak pandai. SD Tentukan negasi dari pernyataan majemuk berikut De AA. Apriansius A. 24 Januari 2022 14:26. Tentukan negasi dari pernyataan majemuk berikut Deni malas belajar atau ia tidak pandai. 11. 1. QuizTentukan negasi dari pernyataan berikut. 2 + 3 = 5 dan 5 bilangan prima Fani mengkonsumsi vitamin atau berolahraga setiap hari Jika efesien manajemen ditingkatkan, maka keuntungan perusahaan akan naik Melly tidak memakai jaket jika dan hanya jika udara panas Latihan Soal Untukmenyusun Ingkaran (Negasi) dari suatu pernyataan dapat kita lakukan dengan menambahkan kata " Tidak ", atau " Bukan " di depan (atau ditengah) pernyataan semula. Negasi juga biasanya dilambangkan dengan " ~ " yang di tulis di depan pernyataan. Jika p suatu pernyataan yang benar maka ~p merupakan pernyataan yang bernilai salah. Contohsoal logika matematika SMA dan pembahasan ini mencakup tentang negasi atau ingkaran suatu pernyataan penggabungan pernyataan majemuk dengan konjungsi disjungsi implikasi biimplikasi dan penarikan kesimpulan dari beberapa premis dan pernyataan yang setara. Bagi gengs yang kurang mengerti bisa baca rangkuman materinya plus ada soal latihannya. Soal2 Tentukanlah negasi dari pernyataan-pernyataan di bawah ini: A. p = Semua karyawan memakai seragam biru pada hari Jum'at. B. p = Semua murid mengikuti ujian nasional hari ini. C. p = Semua jenis ikan bernafas dengan insang. LatihanMateri LOGIKA MATEMATIKA 1. Tentukan negasi dari pernyataan-pernyataan berikut ini. (a) Tarif dasar listrik naik. (b) 10 = 50 5 (c) Celana Dono berwarna hitam. (d) Semua jenis ikan bertelur. (e) Beberapa astronot adalah warga Amerika. (f) Mungkin akan hujan salju hari ini. (g) Leony seorang sarjana. (h) Semua anak kehausan. Tentukannegasi atau ingkaran pernyataan majemuk berikut ini : a). Hari ini hujan atau cuaca cerah. b). Budi lulus SMA dan melanjutkan kuliah kedokteran. c). Jika Iwan ingin menjadi hakim, maka ia harus kuliah jurusan hukum. d). Wati juara kelas jika dan hanya jika wati cerdas. LatihanLogika Matematika 1. Tentukan negasi dari pernyataan-pernyataan berikut: a) Hari ini Jakarta banjir. b) Kambing bisa terbang. c) Didi anak bodoh. d) Siswa-siswi SMANSA memakai baju batik pada hari Rabu. Pembahasan. a) Tidak benar bahwa hari ini Jakarta banjir. b) Tidak benar bahwa kambing bisa terbang. . Blog Koma - Artikel yang masih merupakan submateri "logika matematika" yang akan kita bahas pada artikel ini adalah Pernyataan Majemuk Logika Matematika. Pada artikel sebelumnya kita telah mempelajari submateri "pernyataan dan kalimat terbuka" dimana pernyataan dapat dibedakan menjadi pernyataan tunggal dan pernyataan majemuk. Kumpulan lebih dari satu pernyataan tunggal kita sebut sebagai Pernyataan Majemuk Logika Matematika yang akan dihubungkan dengan kata penghubung seperti "dan", "atau", "jika ... maka ... ", dan "... jika dan hanya jika ...". Pada submateri Pernyataan Majemuk Logika Matematika ini, kita juga akan mempelajari nilai kebenaran dari pernyataan majemuk tersebut yang akan kita dapftar dalam sebuah tabel yang biasa kita sebut "tabel kebenaran" dari pernyataan majemuknya. Untuk memudahkan, kita harus bisa mengubah setiap pernyataan tunggal dengan notasi-notasi yaitu biasanya dengan huruf kecil. Berikut penjelasan Pernyataan Majemuk Logika Matematika secara lebih mendetail yang dilengkapi dengan contohnya. Pengertian Pernyataan Majemuk Pernyataan majemuk adalah gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung. Ada empat jenis kata hubung yang kita gunakan yaitu "dan", "atau", "jika ... maka ...." , "... jika dan hanya jika ..." . Keemepat kata penghubung ini juga biasa disebut sebagai operasi dalam logika matematika. Nilai kebenaran dari suatu pernyataan majemuk ditentukan oleh nilai kebenaran dari masing-masing pernyataan tunggalnya dan kata hubung apa yang digunakan. Pernyataan Majemuk Konjungsi "dan" Konjungsi adalah pernyataan majemuk yang menggunakan kata hubung "dan". Kata hubung "dan" disajikan dengan lambang "$\wedge$". Kata hubung "dan" pada konjungsi juga setara dengan "meskipun/tetapi/walaupun". Konjungsi dari dua pernyataan tunggal $p$ dan $q$ dinotasikan sebagai "$ p \wedge q $" yang dibaca "$p$ dan $q$". Suatu konjungsi akan bernilai BENAR jika kedua pernyataan pembentuknya bernilai benar dan bernilai SALAH jika salah satu atau keduanya bernilai salah. Perhatikan tabel kebenaran konjungsi di bawah ini. Contoh soal pernyataan majemuk Konjungsi "dan" 1. Berikut adalah contoh pernyataan majemuk dengan operasi konjungsi a. Indonesia adalah negara Republik dan berpenduduk 200 juta jiwa. b. 2 adalah bilangan prima dan 2 habis dibagi 4. c. Gajah berkaki empat dan dapat terbang. d. Bumi itu bulat dan bumi mengitari matahari. e. Manusia bernafas dengan paru-paru dan termasuk herbivora. f. Segitiga memiliki empat sisi dan jumlah ketiga sudutnya $ 180^\circ $. 2. Tentukan nilai kebenaran dari bentuk konjungsi Lombok adalah pulau terluas di Indonesia dan 5 adalah bilangan prima. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ Lombok adalah pulau terluas di Indonesia bernilai Salah $ q $ 5 adalah bilangan prima bernilai benar. Berdasarkan tabel kebenaran konjungsi $ p \wedge q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = S , \tau q = B $ sehingga $ \tau p \wedge q = S $. Pernyataan Majemuk Disjungsi "atau" Disjungsi adalah pernyataan majemuk dengan kata hubung "atau". Disjungsi dari pernyataan $p$ dan $q$ dinotasikan $p \vee q $ dan dibaca "$p$ atau $q$". Suatu disjungsi memikili nilai kebenaran SALAH jika kedua pernyataan pembentuknya bernilai salah. Akan tetapi, berniali BENAR jika salah satu atau keduanya bernilai benar. Perhatikan tabel kebenaran disjungsi di bawah ini! Contoh soal pernyataan majemuk Disjungsi "atau" 3. Berikut adalah contoh pernyataan majemuk disjungsi a. Bali adalah privinsi paling timur di Indonesia atau Lombok adalah pulau terkecil. b. 3 bilangan prima atau 5 bilangan prima genap. c. Pak Budi berlangganan harian Kompas atau Kedaulatan Rakyat. d. Wati pergi ke perpustakaan atau ke kantin. e. Saya rajin belajar atau saya lulus UN. f. $ 2 + 3 \leq 4 $ atau Surabaya adalah kota pahlawan. 4. Tentukan nilai kebenaran dari bentuk disjungsi Denpasar ibukota provinsi Bali atau kota bandung ada di Jawa Timur. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ Denpasar ibukota provinsi Bali bernilai Benar $ q $ kota bandung ada di Jawa Timur bernilai Salah. Berdasarkan tabel kebenaran disjungsi $ p \vee q $ bernilai Benar. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \vee q = B $. Catatan *. Bentuk disjungsi dibagi menjadi dua yaitu disjungsi inklusif dan disjungsi eksklusif. *. disjungsi inklusif adalah disjungsi yang sudah kita bahas di atas. *. disjungsi eksklusif adalah disjungsi yang bernilai benar jika hanya ada salah satu pernyataan yang benar, dilambangkan dengan $ \oplus $ atau $ \underline{\vee} $ . *. Kalau tidak dikatakan apa-apa, maka dalam Matematika biasanya yang dimaksud adalah disjungsi inklusif. Pernyataan Majemuk Implikasi "jika ... maka ..." Implikasi adalah pernyataan majemuk dengan kata hubung "jika .... maka....". Implikasi dari pernyataan $p$ dan $q$ dinotasikan dengan $p \Rightarrow q$ yang dibaca "jika $p$, maka $q$" atau "$p$ hanya jika $q$" atau "$p$ syarat cukup untuk $q$" atau "$q$ syarat perlu untuk $p$". Dari implikasi $ p \Rightarrow q$ , $p$ disebut anteseden atau sebab atau hipotesa, $q$ disebut konsekuen atau kesimpulan atau konklusi. Pernyataan implikasi $ p \Rightarrow q $memikili nilai kebenaran SALAH, jika anteseden $p$ bernilai benar dan konsekuen $q$ bernilai salah. Perhatikan tabel kebenaran implikasi di bawah! Contoh soal pernyataan majemuk Implikasi "jika ... maka ..." 5. Berikut adalah contoh pernyataan majemuk implikasi a. Jika turun hujan, maka jalanan akan basah. b. Jika Intan adalah seorang pria, maka ia akan mempunyai kumis. c. Jika bumi berputar dari timur ke barat, maka matahari akan terbit disebelah barat. d. Jika $ a > b $ , maka $ a + c > b + c $ e. Jika $ 4 -5 $ f. Jika $ x > 12 $ , maka $ x > 4 $. 6. Tentukan nilai kebenaran dari bentuk implikasi Jika 2 adalah bilangan prima genap, maka 2 adalah bilangan ganjil. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ 2 adalah bilangan prima genap bernilai Benar $ q $ 2 adalah bilangan ganjil bernilai Salah. Berdasarkan tabel kebenaran implikasi $ p \Rightarrow q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \Rightarrow q = S $. 7. Tentukan manakah yang merupakan syarat perlu dan syarat cukup dari bentuk implikasi berikut ini Jika $x$ adalah bilangan genap, maka $x$ habis dibagi 2. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ $x$ adalah bilangan genap. $ q $ $x$ habis dibagi 2. -. $ p $ adalah sebagai syarat cukup. -. $ q $ adalah sebagai syarat perlu. Dapat kita tulis secara lengkap yaitu -. Pertama "$x$ adalah bilangan genap" merupakan syarat cukup untuk "$x$ habis di bagi 2". -. Kedua "$x$ habis di bagi 2" merupakan syarat perlu agar "$x$ adalah bilangan genap". Catatan *. Dalam bahasa sehari-hari kita memakai implikasi dalam bermacam-macam arti, misalnya a. Untuk menyatakan suatu syarat Contoh "Jika kamu tidak membeli karcis, maka kamu tidak akan diperbolehkan masuk". b. Untuk menyatakan suatu hubungan sebab akibat Contoh "Jika kehujanan, maka Iwan pasti sakit". c. Untuk menyatakan suatu tanda Contoh "Jika bel berbunyi, maka mahasiswa masuk ke dalam ruang kuliah". *. Penjelasan syarat cukup dan syarat cukup Bentuk $ A \Rightarrow B $ -. A diatas disebut syarat cukup untuk B, karena bila A terjadi benar maka B juga berjadi benar. -. B juga disebut syarat perlu untuk A. Suatu syarat disebut syarat perlu bila tidak terpenuhinya salahnya syarat tersebut mengakibatkan tidak terjadinya apa yang disyaratkan. Pernyataan Majemuk Biimplikasi "... jika dan hanya jika ..." Biimplikasi adalah pernyataan majemuk dengan kata hubung "....jika dan hanya jika...." dan dilambangkan $\Leftrightarrow$. Biimplikasi dari pernyataan $p$ dan $q$ ditulis $p \Leftrightarrow q $ yang dibaca "$p$ jika dan hanya jika $q$" atau "jika $p$ maka $q$ dan jika $q$ maka $p$". Biimplikasi memikili nilai kebenaran BENAR, jika anteseden $p$ dan konsekuen $q$ memiliki nilai kebenaran yang sama. Perhatikan tabel kebenaran biimplikasi di bawah! Contoh soal pernyataan majemuk Biimplikasi "... jika dan hanya jika ..." 8. Berikut contoh pernyataan majemuk biimplikasi a. Matahari terbit jika dan hanya jika bumi berotasi. b. Indonesia Merdeka jika dan hanya jika Jepang mengalahkan sekutu. c. $ a + b = c $ jika dan hanya jika $ c - b = a $ d. hujan turun jika dan hanya jika terjadi penguapan air laut. e. $ x^2 = 4 $ jika dan hanya jika $ x = -2 $ atau $ x = 2 $. 9. Tentukan nilai kebenaran dari bentuk Biimplikasi $ 2 \times 4 = 8 $ jika dan hanya jika 4 bilangan prima. Penyelesaian *. Kita ubah menjadi simbol huruf $ p $ $ 2 \times 4 = 8 $ bernilai Benar $ q $ 4 bilangan prima bernilai Salah. Berdasarkan tabel kebenaran biimplikasi $ p \Leftrightarrow q $ bernilai Salah. *. Berikut simbol menggunakan nilai kebenarannya $ \tau p = B , \tau q = S $ sehingga $ \tau p \Leftrightarrow q = S $. Demikian pembahasan materi Pernyataan Majemuk Logika Matematika dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan logika matematika yaitu "Konvers, Invers, dan Kontraposisi". Sobat Zenius tahu gak sih kalau dalam pelajaran Matematika, elo bukan hanya mempelajari angka dan perhitungan saja. Namun, terdapat materi yang dipelajari selain hitung-menghitung, yaitu materi logika matematika. Apa itu logika matematika? Pasti itu merupakan salah satu pertanyaan saat elo pertama kali mengetahui kalau ternyata Matematika juga memiliki materi selain hitung-hitungan. Nah, untuk menjawab pertanyaan tersebut, di artikel kali ini, gue bakalan menjelaskan mengenai definisi dan topik materi tentang logika matematika dengan lebih detail. Yuk, simak ulasannya di bawah ini. Illustrasi berpikir menggunakan logika Dok. Zenius Pengertian Logika MatematikaPernyataan Ingkaran/Negasi ~Pernyataan Majemuk Pengertian Logika Matematika Sebelum membahas lebih lanjut mengenai topik dalam materi ini, ada baiknya elo tahu pengertian logika matematika terlebih dahulu. Logika matematika adalah cara berpikir atau bisa dikatakan sebagai landasan tentang bagaimana cara kita mengambil kesimpulan dari suatu keadaan atau kondisi tertentu. Jadi, dengan mempelajari materi ini, elo bakal bisa berpikir dengan lebih kritis dan rasional sehingga nantinya keputusan yang diambil lebih objektif dan tidak bias. Nah, karena elo sudah tahu apa itu logika matematika, selanjutnya, gue bakal bahas lebih detail mengenai topik-topik dalam materi ini yang mencakup pernyataan, ingkaran, konjungsi, disjungsi, implikasi, dan biimplikasi lengkap dengan tabel kebenaran, simbol, dan contoh logika matematika dari setiap topik tersebut. Check it out! Pernyataan Pada dasarnya, pernyataan logika matematika merupakan suatu kalimat yang bernilai benar ataupun salah, namun tidak keduanya. Sedangkan, suatu kalimat dikatakan bukan pernyataan jika kita tidak dapat menentukan apakah kalimat tersebut benar atau salah atau mengandung pengertian relatif. Terdapat dua jenis pernyataan, yaitu pernyataan tertutup dan pernyataan terbuka. Pernyataan tertutup merupakan pernyataan yang sudah bisa dipastikan nilai kebenarannya, sedangkan pernyataan terbuka yaitu pernyataan yang belum bisa dipastikan nilai kebenarannya. Contoh 8 + 2 = 10 pernyataan tertutup yang bernilai benar4 × 6 = 20 pernyataan tertutup yang bernilai salah5a + 10 = 40 pernyataan terbuka, karena harus dibuktikan kebenarannyaJarak Jakarta-Bogor adalah dekat bukan pernyataan, karena dekat itu relatif Ingkaran/Negasi ~ Ingkaran didefinisikan sebagai sebuah pernyataan yang memiliki nilai kebenaran yang berlawanan dengan pernyataan semula. Berikut adalah simbol dan tabel kebenaran ingkaran/negasi. p~pBSSB Artinya, jika suatu pertanyaan p bernilai benar B, maka ingkaran q akan bernilai salah S. Begitu pula sebaliknya. Contoh p Semua murid lulus ujian ~p Ada murid yang tidak lulus ujian Pernyataan Majemuk Pernyataan majemuk merupakan pernyataan gabungan dari beberapa pernyataan tunggal yang dihubungkan dengan kata hubung. Pernyataan majemuk di dalam logika matematika terdiri dari disjungsi, konjungsi, implikasi, dan biimplikasi. Konjungsi ∧ Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung dan’ sehingga membentuk pernyataan majemuk p dan q’ yang disebut konjungsi yang dilambangkan dengan “p∧q”. Berikut adalah simbol dan tabel kebenaran konjungsi. pqp∧qBBBBSSSBSSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep konjungsi akan bernilai benar jika dan hanya jika kedua pernyataan p dan q benar. Contoh Budi sudah makan belajar dan makan. Misalkan, untuk dapat diizinkan bermain oleh Ibu, Budi harus memenuhi kondisi di atas. Jika satu saja atau bahkan kedua pernyataan tersebut dilanggar, maka Budi tidak diizinkan untuk bermain. Disjungsi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung atau’ sehingga membentuk pernyataan majemuk p atau q’ yang disebut disjungsi yang dilambangkan dengan “p ∨ q”. Berikut adalah simbol dan tabel kebenaran disjungsi. pqp∨qBBBBSBSBBSSS Dari tabel di atas dapat disimpulkan bahwa dalam konsep disjungsi hanya akan bernilai salah jika kedua pernyataan p dan q salah. Contoh Bandung atau Palembang adalah kota yang terletak di Pulau Jawa. Pernyataan Bandung adalah kota yang terletak di Pulau Jawa adalah benar. Pernyataan Palembang adalah kota yang terletak di Pulau Jawa adalah salah. Sehingga pernyataan Bandung atau Palembang adalah kota yang terletak di Pulau Jawa bernilai benar. Implikasi ⟹ Implikasi bisa dipandang sebagai hubungan antara dua pernyataan di mana pernyataan kedua merupakan konsekuensi logis dari pernyataan pertama. Implikasi ditandai dengan notasi ⟹’. Misalkan p, q adalah pernyataan, implikasi berikut p ⟹ q dibaca jika p maka q’. Berikut adalah simbol dan tabel kebenaran disjungsi. pqp⇒qBBBBSSSBBSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep implikasi akan bernilai salah jika dan hanya jika sebab bernilai benar namun akibat bernilai salah. Selain itu implikasi bernilai benar. Contoh Jika Budi sembuh maka Budi akan sekolah Jika betul Budi sembuh lalu Budi masuk sekolah, Budi telah melakukan hal yang benar. Namun jika Budi sembuh namun dia tidak masuk sekolah, Budi telah berbuat salah karena mengingkari janjinya. Lalu, bagaimana jika Budi belum sembuh? Perhatikan bahwa Budi hanya berjanji masuk sekolah jika dia sembuh. Akibatnya jika dia masih belum sembuh, tidak masalah bagi Budi untuk masuk sekolah ataupun tidak karena dia tidak melanggar janjinya. Biimplikasi Suatu pernyataan p dan q dapat digabungkan dengan menggunakan kata hubung jika dan hanya jika’ sehingga membentuk pernyataan majemuk p jika dan hanya jika q’ yang disebut biimplikasi yang dilambangkan dengan “p ⇔ q”. Berikut adalah simbol dan tabel kebenaran biimplikasi pqp⇔qBBBBSSSBSSSB Dari tabel di atas dapat disimpulkan bahwa dalam konsep biimplikasi akan bernilai benar jika sebab dan akibatnya pernyataan p dan q bernilai sama. Baik itu sama-sama benar, atau sama-sama salah. Contoh Ayah mendapatkan gaji jika dan hanya jika ayah bekerja. Jika ayah mendapatkan gaji maka ayah bekerja dan jika ayah telah bekerja maka ayah akan mendapat gaji. Sebaliknya, jika ayah tidak mendapatkan gaji maka ayah sedang tidak bekerja dan jika ayah tidak bekerja maka ayah tidak akan mendapat gaji. Nah, Sobat Zenius apa sudah dapat memahami materi tentang logika matematika dengan baik? Selanjutnya, gue bakal kasih link buat elo mengasah pemahaman melalui latihan soal di sini. Sekian artikel tentang rangkuman materi logika matematika. Semoga artikel ini bermanfaat dan menambah wawasan elo. Jangan lupa buat mengerjakan latihan soalnya, ya! Berani ngetes skill matematika? Nih, cobain Zencore! Dengan fitur adaptive learning, elo bisa tau seberapa jago kemampuan fundamental lewat kuis CorePractice, sekaligus upgrade otak biar makin cerdas! Ketuk banner di bawah buat cobain! Nggak cuma kuis, kalau elo berlangganan paket belajar Zenius elo bakal dapat akses ke ribuan live class asik bersama para tutor berpengalaman. Klik di bawah ini ya untuk pengalaman belajar yang lebih seru! Tonton Video Pembahasan Tentang Logika Matematika dari Zenius Materi Matematika Kalimat-kalimat Logika Materi Matematika Hubungan Antar Kalimat Materi Matematika Pengambilan Kesimpulan Originally published October 26, 2019Updated by Ni Kadek Namiani Tiara Putri – SEO Writer Intern Zenius Perangkai Logika Negasi, Konjungsi, Diajungsi, Implikasi, dan Biimplikasi Ada lima jenis perangkai logika yang dapat dipakai untuk menggabungkan pernyataan-pernyataan menjadi pernyataan majemuk, yaitu negasi negation, konjungsi conjunction, disjungsi disjunction, implikasi implication, dan biimplikasi biimplication. Tabel menyajikan jenis, simbol dan bentuk dari lima perangkai logika. Tabel Prioritas dari perangkai-perangkai logika disajikan dalam Tabel Perangkai logika dengan prioritas lebih tinggi harus diselesaikan lebih dahulu. Tabel Perangkai Prioritas Negasi 5 Konjungsi 4 Disjungsi3 Implikasi2 Biimplikasi1 Untuk mereduksi jumlah tanda simbol dan bentuk digunakan perjanjian "Tanda kurung dapat dihilangkan apabila pernyataan dapat dikonstruksi dengan prioritas perangkai". Misalkan $p$ sebuah pernyataan. Negasi ingkaran dari $p$ adalah pernyataan tidak p, yang dilambangkan dengan $\neg p$. Jadi, jika $p$ bernilai benar, maka $\neg p$ bernilai salah, dan jika $p$ bernilai salah, maka $\neg p$ bernilai benar. Tabel kebenaran $\neg p$ relatif terhadap $p$ disajikan dalam Tabel Tabel $p$ $\neg p$ TF FT Contoh Tentukan negasi dari pernyataan-pernyataan berikut a $p$ $2+3>5$. b $q$ $5-2=3$. c $r$ Hari ini hujan. Penyelesaian a $\neg p$ $2+3 \le 5$. b $\neg q$ $5-2 \ne 3$. c $\neg r$ Hari ini tidak hujan. Konjungsi Misalkan $p$ dan $q$ adalah pernyataan. Konjungsi dari $p$ dan $q$ adalah pernyataan majemuk “p dan q”, yang dilambangkan dengan $p \wedge q$. Pernyataan majemuk $p \wedge q$ bernilai benar jika $p$ dan $q$ keduanya benar. Pernyataan majemuk bernilai salah jika salah satu $p$ atau $q$ salah, atau $p$ dan $q$ keduanya salah. Tabel kebenaran $p \wedge q$ disajikan dalam Tabel Tabel $p$ $q$ $p \wedge q$ T T T T F F F T F F F F Contoh Bentuklah konjungsi dari $p$ dan $q$. a $p$ $2+3>5$; $q$ $5-2=3$. b $p$ $-3>-7$; $q$ $3 \le 5$. c $p$ 2 adalah bilangan prima; $q$ $4>2$. Penyelesaian a $p \wedge q$ F b $p \wedge q$ T c $p \wedge q$ T Disjungsi Disjungsi dari pernyataan-pernyataan p dan q adalah pernyataan majemuk "p atau q", yang dilambangkan dengan $p \vee q$. Pernyataan majemuk $p \vee q$ bernilai benar jika salah satu atau kedua-duanya benar. Dalam praktek, kadang-kadang ditulis "dan/atau" dalam arti inklusif. Tabel kebenaran $p \vee q$ disajikan dalam Tabel Tabel $p$ $q$ $p \vee q$ T T T T F T F T T F F F Contoh Bentuklah disjungsi dari $p$ dan $q$. a $p$ $2+3 \ne 5$ $q$ $3>5$. b $p$ 2 adalah bilangan prima, $q$ $\sqrt{2}$ adalah bilangan rasional. Penyelesaian a $p \vee q$ F b $p \vee q$ T Implikasi Misalkan $p$ dan $q$ adalah pernyataan. Pernyataan majemuk "jika $p$, maka $q$", yang dilambangkan dengan $p \to q$ disebut pernyataan bersyarat atau implikasi. Pernyataan $p$ disebut hipotesis atau anteseden antecedent dan $q$ disebut konklusi atau konsekuen consequent. Pernyataan majemuk $p \to q$ bernilai salah jika $p$ benar dan $q$ salah. Dalam kemungkinan lainnya, $p \to q$ bernilai benar. Tabel kebenaran $p \to q$ disajikan dalam Tabel Tabel $p$ $q$ $p \to q$ T T T T F F F T T F F T Contoh Tuliskan implikasi dari $p$ dan $q$. a $p$ Saya lapar $q$ Saya akan makan b $p$ 2 adalah bilangan prima $q$ $4>2$. Penyelesaian a Jika saya lapar, maka saya akan makan. b 2 adalah bilangan prima, maka $4>2$. Dalam matematika praktek, pernyataan-pernyataan berikut merupakan bentuk yang ekuivalen, artinya jika salah satu benar maka semua yang lain juga benar dan jika salah satu salah, semua yang lain juga salah. a Jika $p$ ,maka $q$. b $p$ mengimplikasi $q$. c Jika $p$, $q$. d $p$ hanya jika $q$. e $q$ jika $p$. f $p$ adalah syarat cukup untuk $q$. g $q$ adalah syarat perlu untuk $p$. Biimplikasi Misalkan $p$ dan $q$ adalah pernyataan. Pernyataan majemuk "$p$ jika dan hanya jika $q$", yang dilambangkan dengan $p \iff q$ disebut biimplikasi. Tabel kebenaran $p \iff q$ disajikan dalam Tabel Pernyataan majemuk $p \iff q$ bernilai benar jika $p$ dan $q$ keduanya benar atau keduanya salah. Biimplikasi $p \iff q$ juga dinyatakan sebagai $p$ adalah syarat perlu dan cukup untuk $q$. Tabel $p$ $q$ $p \iff q$ T T T T F F F T F F F T Contoh Apakah biimplikasi berikut benar? $4>3$ jika dan hanya jika $4-3>0$. Penyelesaian Misalkan $p$ adalah pernyataaan $4>3$ dan $q$ adalah pernyataan $4-3>0$. Karena $p$ dan $q$ keduanya bernilai benar, maka disimpulkan bahwa $p \iff q$ bernilai benar. Negasi dari Konjungsi, Disjungsi, Implikasi, dan Biimplikasi 1. $\neg p \wedge q \equiv \neg p \vee \neg q$. 2. $\neg p \vee q \equiv \neg p \wedge \neg q$. 3. $\neg p \to q \equiv p \wedge \neg q$. 4. $\neg p \iff q \equiv$ $\neg p \to q \vee \neg q \to p$. Demikianlah postingan tentang perangkai logika. Sampai jumpa dan semoga bermanfaat.

tentukan negasi dari pernyataan majemuk berikut